
 

 

2.2.1.1. Defining sensing requirements  
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Operating scenarios for Autonomous Vehicles (AVs) comprehend both structured, human-
built environments and the vast scope of natural scenery. Hazards span from many-
participant traffic environments to treacherous surfaces and lighting and weather 
conditions. Defining the operating scenarios as a combination of both scene and possible 
threats, we advocate that different combinations will require different sensor payloads as 
specific sensing modalities provide robust performances under particular circumstances. 
Moreover, we argue for an extension of the most common sensor suite used in AVs to 
include unusual sensing modalities, which can be less affected by challenging environmental 
conditions [1]. 

A diverse dataset 

A primary contribution of the SAX project [2] is the collection of a variegate dataset. It 
contains a broad combination of scenes -- urban, rural and off-road -- and hazards -- mixed 
driving surfaces, adverse weather conditions, and other actors’ presence. The main goal of 
this dataset is to show how specific sensors behave in particular scenarios. Our sensor suite 
extends the pool of sensors traditionally used for AVs with uncommonly-used sensors that 
show great promise in challenging scenarios. Among the first, we can list cameras, LiDARS, 
GPS/INS and automotive radar; we also collect data from a Frequency-Modulated 
Continuous-Wave (FMCW) scanning radar, audio from microphones in the wheel arches and 
all the internal states of the vehicle. 

The dataset will give us a deeper understanding of the behaviour of the sensors under such 
different conditions, highlighting strengths and limitations. To do so, we accompany the 
data with ground-truth labels for various tasks – object detection/segmentation, drivable 
surface segmentation, odometry – to train and validate algorithms. 

 

Figure 1. Vehicle Platform and Sensor Suite and the location in the UK for the collection sites. 
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FMCW scanning radar 

Although radar has been a typical sensor modality for automotive applications for several 
decades, FMCW scanning radar has only been introduced to commercial uses in the past 
few years due to reductions in costs and dimensions. Radar can benefit safety greatly in 
scenarios in which traditionally exploited sensors like cameras and lasers will fail due to its 
inherent robustness to weather conditions and long sensing range. 

We showed how AVs could utilise radar independently from other sensors for low-level 
autonomy tasks, ranging from odometry [3] and localisation [4] [5] [6] to scene 
understanding [7] [8] to path planning [9]. 

 

 

Figure 2. A radar scan (left) is labelled using camera and lidar data (centre) for training a semantic 
segmentation pipeline (right) [7]. 

 

 

Fig 3: Radar is used to understand the driveability of the scene (black and white), giving us representations 
through which the AV can plan its motion (red) [9]. 

Audio 

Recent research showed how audio can be a suitable sensing modality for various tasks, 
either with or without fusing its information with other sensors [10]. We have studied how 
audio can benefit road-surface classification [8]. Audio has the advantage to be inherently 
invariant to the scene illumination, although it contains only very punctual information – i.e. 
in the contact point between the wheel and the ground. For this reason, we coupled the 
audio data with odometry estimation to build an automatic annotation tool to teach a radar 
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segmentation network to distinguish road surfaces with the advantage of an extended field 
of view. 

 

Figure 4. Audio data is used to label a radar scan (left) for training a semantic segmentation pipeline (right) to 
distinguish between road surfaces [8]. 

CAN 

The dataset also contains data recorded from the CAN bus of the vehicle. The variables 
recorded span from the steering wheel angle to the rotational speed of each wheel to the 
engaged gear. Such variables contain critical information for several tasks, which can treat 
them either as sensory data – e.g. for driver identification [11] – or as control signals – e.g. 
for training behavioural-cloning algorithms [12]. 

External services 

We challenge the definition of a sensor by including services provided by external operators, 
particularly satellite imagery and weather forecasts. Although these are, in practice, sub 
products of GPS queries, the information they contain can be valuable for tasks such as 
localisation [13] [14] or route planning. 

On this matter, we explored how services like Google maps can serve as readily available 
maps of never-seen places where an AV can localise using range sensors, like LiDAR and 
radar. We showed that deep learning approaches could overcome the domain difference 
between the external service and the sensor stream and achieve accurate displacement 
estimation between the overhead image and the AV in an urban environment. 
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Figure 5: Satellite images used as a map for radar (top) and LiDAR (bottom) sensors. The satellite image is 
converted into a synthetic sample of the sensor domain to estimate the translational and rotational offset 
between the two [13]. 

 

 

Figure 6: A satellite image is converted into a point cloud by estimating an occupancy map for offset estimation 
with a LiDAR scan [14]. 

Summary 

In summary, we present a universal view of AV sensing requirements and how uncommon 
sensing modalities can be suitable for overcoming challenging operational scenarios. Ideally, 
we would like our vehicles to be deployable and performant in any situation. The sensing 
capability of the AV plays a critical role, and to evaluate the suitability of specific sensors in 
specific scenarios, we collected a dataset with broad combinations of environments and 
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weather conditions.  Alongside the sensing data, we provide labels for various tasks, which 
can be used for training and evaluation purposes. 
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